Characterization of Low Dimensional RCD*(K, N) Spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-Dimensional Binary Vector Spaces

The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical ...

متن کامل

Lines in n-Dimensional Euclidean Spaces

In this paper, we define the line of n-dimensional Euclidean space and we introduce basic properties of affine space on this space. Next, we define the inner product of elements of this space. At the end, we introduce orthogonality of lines of this space. provide the terminology and notation for this paper. (4) (a · b) · x = a · (b · x). (6) a · (x 1 + x 2) = a · x 1 + a · x 2. (7) (a + b) · x ...

متن کامل

Representing Orientation in n-Dimensional Spaces

In this paper we present new insights in methods to solve the orientation representation problem in arbitrary dimensions. The gradient structure tensor is one of the most used descriptors of local structure in multi-dimensional images. We will relate its properties to the double angle method in 2D and the Knutsson mapping in three or higher dimensions. We present a general scheme to reduce the ...

متن کامل

Audio Key Finding Using Low-Dimensional Spaces

This paper presents two models of audio key finding: a template based correlational model and a template based model that uses a low-dimensional tonal representation. The first model uses a confidence weighted correlation to find the most probable key. The second model is distance based and employs dimensionality reduction to the tonal representation before generating a key estimate. Experiment...

متن کامل

On Low Dimensional Ricci Limit Spaces

We call a Gromov-Hausdorff limit of complete Riemannian manifolds with a lower bound of Ricci curvature a Ricci limit space. In this paper, we prove that any Ricci limit space has integral Hausdorff dimension provided that its Hausdorff dimension is not greater than two. We also classify one-dimensional Ricci limit spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis and Geometry in Metric Spaces

سال: 2016

ISSN: 2299-3274

DOI: 10.1515/agms-2016-0007